3.4.27 \(\int \frac {(c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^2} \, dx\) [327]

Optimal. Leaf size=68 \[ \frac {8 \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {2 \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{a^2 c f} \]

[Out]

8/3*sec(f*x+e)^3*(c-c*sin(f*x+e))^(3/2)/a^2/f-2*sec(f*x+e)^3*(c-c*sin(f*x+e))^(5/2)/a^2/c/f

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2815, 2753, 2752} \begin {gather*} \frac {8 \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {2 \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{a^2 c f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c - c*Sin[e + f*x])^(3/2)/(a + a*Sin[e + f*x])^2,x]

[Out]

(8*Sec[e + f*x]^3*(c - c*Sin[e + f*x])^(3/2))/(3*a^2*f) - (2*Sec[e + f*x]^3*(c - c*Sin[e + f*x])^(5/2))/(a^2*c
*f)

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2753

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {(c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^2} \, dx &=\frac {\int \sec ^4(e+f x) (c-c \sin (e+f x))^{7/2} \, dx}{a^2 c^2}\\ &=-\frac {2 \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{a^2 c f}-\frac {4 \int \sec ^4(e+f x) (c-c \sin (e+f x))^{5/2} \, dx}{a^2 c}\\ &=\frac {8 \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {2 \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{a^2 c f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 92, normalized size = 1.35 \begin {gather*} \frac {2 c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+3 \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{3 a^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sin[e + f*x])^(3/2)/(a + a*Sin[e + f*x])^2,x]

[Out]

(2*c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(1 + 3*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(3*a^2*f*(Cos[(e + f
*x)/2] - Sin[(e + f*x)/2])*(1 + Sin[e + f*x])^2)

________________________________________________________________________________________

Maple [A]
time = 2.00, size = 61, normalized size = 0.90

method result size
default \(-\frac {2 c^{2} \left (\sin \left (f x +e \right )-1\right ) \left (3 \sin \left (f x +e \right )+1\right )}{3 a^{2} \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(61\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

-2/3*c^2/a^2*(sin(f*x+e)-1)/(1+sin(f*x+e))*(3*sin(f*x+e)+1)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 259 vs. \(2 (66) = 132\).
time = 0.51, size = 259, normalized size = 3.81 \begin {gather*} -\frac {2 \, {\left (c^{\frac {3}{2}} + \frac {6 \, c^{\frac {3}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {12 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {6 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {c^{\frac {3}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}}\right )}}{3 \, {\left (a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} f {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

-2/3*(c^(3/2) + 6*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 3*c^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 12
*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 6*c^(3/2)*sin(f
*x + e)^5/(cos(f*x + e) + 1)^5 + c^(3/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6)/((a^2 + 3*a^2*sin(f*x + e)/(cos(
f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)*f*(sin(f*
x + e)^2/(cos(f*x + e) + 1)^2 + 1)^(3/2))

________________________________________________________________________________________

Fricas [A]
time = 0.32, size = 62, normalized size = 0.91 \begin {gather*} \frac {2 \, {\left (3 \, c \sin \left (f x + e\right ) + c\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, {\left (a^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} f \cos \left (f x + e\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

2/3*(3*c*sin(f*x + e) + c)*sqrt(-c*sin(f*x + e) + c)/(a^2*f*cos(f*x + e)*sin(f*x + e) + a^2*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {c \sqrt {- c \sin {\left (e + f x \right )} + c}}{\sin ^{2}{\left (e + f x \right )} + 2 \sin {\left (e + f x \right )} + 1}\, dx + \int \left (- \frac {c \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )}}{\sin ^{2}{\left (e + f x \right )} + 2 \sin {\left (e + f x \right )} + 1}\right )\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**2,x)

[Out]

(Integral(c*sqrt(-c*sin(e + f*x) + c)/(sin(e + f*x)**2 + 2*sin(e + f*x) + 1), x) + Integral(-c*sqrt(-c*sin(e +
 f*x) + c)*sin(e + f*x)/(sin(e + f*x)**2 + 2*sin(e + f*x) + 1), x))/a**2

________________________________________________________________________________________

Giac [A]
time = 0.57, size = 117, normalized size = 1.72 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (c \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {3 \, c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )} \sqrt {c}}{3 \, a^{2} f {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

-4/3*sqrt(2)*(c*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 3*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/4*pi
 + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))*sqrt(c)/(a^2*f*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1
)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^3)

________________________________________________________________________________________

Mupad [B]
time = 10.32, size = 120, normalized size = 1.76 \begin {gather*} -\frac {4\,c\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,\left (2\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}\,3{}\mathrm {i}+3{}\mathrm {i}\right )}{3\,a^2\,f\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^3\,\left (1+{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c*sin(e + f*x))^(3/2)/(a + a*sin(e + f*x))^2,x)

[Out]

-(4*c*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*(2*exp(e*1i +
 f*x*1i) - exp(e*2i + f*x*2i)*3i + 3i))/(3*a^2*f*(exp(e*1i + f*x*1i) + 1i)^3*(exp(e*1i + f*x*1i)*1i + 1))

________________________________________________________________________________________